YOLO源码(Darknet源码)解读(network.c)
network.c#include <stdio.h>#include <time.h>#include <assert.h>#include "network.h"#include "image.h"#include "data.h"#include &
·
network.c
#include <stdio.h>
#include <time.h>
#include <assert.h>
#include "network.h"
#include "image.h"
#include "data.h"
#include "utils.h"
#include "blas.h"
#include "crop_layer.h"
#include "connected_layer.h"
#include "gru_layer.h"
#include "rnn_layer.h"
#include "crnn_layer.h"
#include "local_layer.h"
#include "convolutional_layer.h"
#include "activation_layer.h"
#include "detection_layer.h"
#include "region_layer.h"
#include "yolo_layer.h"
#include "normalization_layer.h"
#include "batchnorm_layer.h"
#include "maxpool_layer.h"
#include "reorg_layer.h"
#include "avgpool_layer.h"
#include "cost_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
#include "route_layer.h"
#include "upsample_layer.h"
#include "shortcut_layer.h"
#include "parser.h"
#include "data.h"
load_args get_base_args(network *net)
{
load_args args = {0};
args.w = net->w;
args.h = net->h;
args.size = net->w;
args.min = net->min_crop;
args.max = net->max_crop;
args.angle = net->angle;
args.aspect = net->aspect;
args.exposure = net->exposure;
args.center = net->center;
args.saturation = net->saturation;
args.hue = net->hue;
return args;
}
network *load_network(char *cfg, char *weights, int clear)
{
network *net = parse_network_cfg(cfg);
if(weights && weights[0] != 0){
load_weights(net, weights);
}
if(clear) (*net->seen) = 0;
return net;
}
// 获取当前的迭代次数
size_t get_current_batch(network *net)
{
size_t batch_num = (*net->seen)/(net->batch*net->subdivisions);
return batch_num;
}
void reset_network_state(network *net, int b)
{
int i;
for (i = 0; i < net->n; ++i) {
#ifdef GPU
layer l = net->layers[i];
if(l.state_gpu){
fill_gpu(l.outputs, 0, l.state_gpu + l.outputs*b, 1);
}
if(l.h_gpu){
fill_gpu(l.outputs, 0, l.h_gpu + l.outputs*b, 1);
}
#endif
}
}
void reset_rnn(network *net)
{
reset_network_state(net, 0);
}
// 得到当前迭代的学习率
float get_current_rate(network *net)
{
size_t batch_num = get_current_batch(net);
int i;
float rate;
// 当迭代次数小于 burn_in 时,learning_rate = learning_rate * ((batch_num / burn_in) ^ power)
if (batch_num < net->burn_in) return net->learning_rate * pow((float)batch_num / net->burn_in, net->power);
// 根据策略计算学习率
switch (net->policy) {
case CONSTANT:
return net->learning_rate;
case STEP:
return net->learning_rate * pow(net->scale, batch_num/net->step);
case STEPS:
rate = net->learning_rate;
for(i = 0; i < net->num_steps; ++i){
if(net->steps[i] > batch_num) return rate;
rate *= net->scales[i];
}
return rate;
case EXP:
return net->learning_rate * pow(net->gamma, batch_num);
case POLY:
return net->learning_rate * pow(1 - (float)batch_num / net->max_batches, net->power);
case RANDOM:
return net->learning_rate * pow(rand_uniform(0,1), net->power);
case SIG:
return net->learning_rate * (1./(1.+exp(net->gamma*(batch_num - net->step))));
default:
fprintf(stderr, "Policy is weird!\n");
return net->learning_rate;
}
}
// 根据 layer 的枚举类型返回对应的 layer 名称字符串
char *get_layer_string(LAYER_TYPE a)
{
switch(a){
case CONVOLUTIONAL:
return "convolutional";
case ACTIVE:
return "activation";
case LOCAL:
return "local";
case DECONVOLUTIONAL:
return "deconvolutional";
case CONNECTED:
return "connected";
case RNN:
return "rnn";
case GRU:
return "gru";
case LSTM:
return "lstm";
case CRNN:
return "crnn";
case MAXPOOL:
return "maxpool";
case REORG:
return "reorg";
case AVGPOOL:
return "avgpool";
case SOFTMAX:
return "softmax";
case DETECTION:
return "detection";
case REGION:
return "region";
case YOLO:
return "yolo";
case DROPOUT:
return "dropout";
case CROP:
return "crop";
case COST:
return "cost";
case ROUTE:
return "route";
case SHORTCUT:
return "shortcut";
case NORMALIZATION:
return "normalization";
case BATCHNORM:
return "batchnorm";
default:
break;
}
return "none";
}
// 创建并初始化一个 net 对象
network *make_network(int n)
{
network *net = calloc(1, sizeof(network));
net->n = n;
net->layers = calloc(net->n, sizeof(layer));
net->seen = calloc(1, sizeof(size_t));
net->t = calloc(1, sizeof(int));
net->cost = calloc(1, sizeof(float));
return net;
}
// 前向传播
void forward_network(network *netp)
{
#ifdef GPU
if(netp->gpu_index >= 0){
forward_network_gpu(netp);
return;
}
#endif
network net = *netp;
int i;
for(i = 0; i < net.n; ++i){
// 网络当前活跃层 (index) 为第 i 层
net.index = i;
layer l = net.layers[i];
if(l.delta){
fill_cpu(l.outputs * l.batch, 0, l.delta, 1);
}
// 前向传播
l.forward(l, net);
// 上一层的输出为下一层的输入
net.input = l.output;
if(l.truth) {
net.truth = l.output;
}
}
// 计算网络的 loss
calc_network_cost(netp);
}
// 更新网络参数
void update_network(network *netp)
{
#ifdef GPU
if(netp->gpu_index >= 0){
update_network_gpu(netp);
return;
}
#endif
network net = *netp;
int i;
update_args a = {0};
a.batch = net.batch*net.subdivisions;
a.learning_rate = get_current_rate(netp);
a.momentum = net.momentum;
a.decay = net.decay;
a.adam = net.adam;
a.B1 = net.B1;
a.B2 = net.B2;
a.eps = net.eps;
++*net.t;
a.t = *net.t;
for(i = 0; i < net.n; ++i){
layer l = net.layers[i];
if(l.update){
l.update(l, a);
}
}
}
// 计算网络的 loss
void calc_network_cost(network *netp)
{
network net = *netp;
int i;
float sum = 0;
int count = 0;
for(i = 0; i < net.n; ++i){
if(net.layers[i].cost){
sum += net.layers[i].cost[0];
++count;
}
}
*net.cost = sum/count;
}
// 获取网络预测的类别
int get_predicted_class_network(network *net)
{
return max_index(net->output, net->outputs);
}
// 反向传播
void backward_network(network *netp)
{
#ifdef GPU
if(netp->gpu_index >= 0){
backward_network_gpu(netp);
return;
}
#endif
network net = *netp;
int i;
network orig = net;
for(i = net.n-1; i >= 0; --i){
layer l = net.layers[i];
if(l.stopbackward) break;
// i == 0 表示第1个隐含层,第1个隐含层的前一层就是输入层
if(i == 0){
// orig.input 就是第1层的输入
// 第1层无需计算上一层的delta
net = orig;
}else{
layer prev = net.layers[i-1];
net.input = prev.output;
net.delta = prev.delta;
}
// 网络当前活跃层 (index) 为第 i 层
net.index = i;
// 反向传播
l.backward(l, net);
}
}
// 批量梯度下降
float train_network_datum(network *net)
{
*net->seen += net->batch;
net->train = 1;
forward_network(net);
backward_network(net);
float error = *net->cost;
if(((*net->seen)/net->batch)%net->subdivisions == 0) update_network(net);
return error;
}
// 随机梯度下降
float train_network_sgd(network *net, data d, int n)
{
int batch = net->batch;
int i;
float sum = 0;
for(i = 0; i < n; ++i){
// 随机构造1个batch
get_random_batch(d, batch, net->input, net->truth);
float err = train_network_datum(net);
sum += err;
}
return (float)sum/(n*batch);
}
// 训练网络
float train_network(network *net, data d)
{
assert(d.X.rows % net->batch == 0);
// 计算1个epoch需要多少个batch
int batch = net->batch;
int n = d.X.rows / batch;
int i;
float sum = 0;
for(i = 0; i < n; ++i){
// 获取下一个batch
get_next_batch(d, batch, i*batch, net->input, net->truth);
float err = train_network_datum(net);
sum += err;
}
return (float)sum/(n*batch);
}
void set_temp_network(network *net, float t)
{
int i;
for(i = 0; i < net->n; ++i){
net->layers[i].temperature = t;
}
}
// 设置1个batch的输入图像个数
void set_batch_network(network *net, int b)
{
net->batch = b;
int i;
for(i = 0; i < net->n; ++i){
net->layers[i].batch = b;
#ifdef CUDNN
if(net->layers[i].type == CONVOLUTIONAL){
cudnn_convolutional_setup(net->layers + i);
}
if(net->layers[i].type == DECONVOLUTIONAL){
layer *l = net->layers + i;
cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, l->out_h, l->out_w);
cudnnSetTensor4dDescriptor(l->normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, 1, 1);
}
#endif
}
}
// resize 网络每一层的 w,h
int resize_network(network *net, int w, int h)
{
#ifdef GPU
cuda_set_device(net->gpu_index);
cuda_free(net->workspace);
#endif
int i;
//if(w == net->w && h == net->h) return 0;
net->w = w;
net->h = h;
int inputs = 0;
size_t workspace_size = 0;
//fprintf(stderr, "Resizing to %d x %d...\n", w, h);
//fflush(stderr);
// 根据网络类型,对每一个层执行 resize 操作
for (i = 0; i < net->n; ++i){
layer l = net->layers[i];
if(l.type == CONVOLUTIONAL){
resize_convolutional_layer(&l, w, h);
}else if(l.type == CROP){
resize_crop_layer(&l, w, h);
}else if(l.type == MAXPOOL){
resize_maxpool_layer(&l, w, h);
}else if(l.type == REGION){
resize_region_layer(&l, w, h);
}else if(l.type == YOLO){
resize_yolo_layer(&l, w, h);
}else if(l.type == ROUTE){
resize_route_layer(&l, net);
}else if(l.type == SHORTCUT){
resize_shortcut_layer(&l, w, h);
}else if(l.type == UPSAMPLE){
resize_upsample_layer(&l, w, h);
}else if(l.type == REORG){
resize_reorg_layer(&l, w, h);
}else if(l.type == AVGPOOL){
resize_avgpool_layer(&l, w, h);
}else if(l.type == NORMALIZATION){
resize_normalization_layer(&l, w, h);
}else if(l.type == COST){
resize_cost_layer(&l, inputs);
}else{
error("Cannot resize this type of layer");
}
if(l.workspace_size > workspace_size) workspace_size = l.workspace_size;
if(l.workspace_size > 2000000000) assert(0);
inputs = l.outputs;
net->layers[i] = l;
w = l.out_w;
h = l.out_h;
if(l.type == AVGPOOL) break;
}
// 获取网络最后一层(除去loss层)
layer out = get_network_output_layer(net);
net->inputs = net->layers[0].inputs;
net->outputs = out.outputs;
net->truths = out.outputs;
if(net->layers[net->n-1].truths) net->truths = net->layers[net->n-1].truths;
net->output = out.output;
free(net->input);
free(net->truth);
net->input = calloc(net->inputs*net->batch, sizeof(float));
net->truth = calloc(net->truths*net->batch, sizeof(float));
#ifdef GPU
if(gpu_index >= 0){
cuda_free(net->input_gpu);
cuda_free(net->truth_gpu);
net->input_gpu = cuda_make_array(net->input, net->inputs*net->batch);
net->truth_gpu = cuda_make_array(net->truth, net->truths*net->batch);
if(workspace_size){
net->workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
}
}else {
free(net->workspace);
net->workspace = calloc(1, workspace_size);
}
#else
free(net->workspace);
net->workspace = calloc(1, workspace_size);
#endif
//fprintf(stderr, " Done!\n");
return 0;
}
// 返回网络中的 DETECTION 层
layer get_network_detection_layer(network *net)
{
int i;
for(i = 0; i < net->n; ++i){
if(net->layers[i].type == DETECTION){
return net->layers[i];
}
}
fprintf(stderr, "Detection layer not found!!\n");
layer l = {0};
return l;
}
// 将网络第 i 层转换为 image
image get_network_image_layer(network *net, int i)
{
layer l = net->layers[i];
#ifdef GPU
//cuda_pull_array(l.output_gpu, l.output, l.outputs);
#endif
if (l.out_w && l.out_h && l.out_c){
return float_to_image(l.out_w, l.out_h, l.out_c, l.output);
}
image def = {0};
return def;
}
image get_network_image(network *net)
{
int i;
for(i = net->n-1; i >= 0; --i){
image m = get_network_image_layer(net, i);
if(m.h != 0) return m;
}
image def = {0};
return def;
}
// 可视化所有卷基层
void visualize_network(network *net)
{
image *prev = 0;
int i;
char buff[256];
for(i = 0; i < net->n; ++i){
sprintf(buff, "Layer %d", i);
layer l = net->layers[i];
if(l.type == CONVOLUTIONAL){
prev = visualize_convolutional_layer(l, buff, prev);
}
}
}
// 返回网络 output 的 top-k
void top_predictions(network *net, int k, int *index)
{
top_k(net->output, net->outputs, k, index);
}
// 给定输入,网络预测输出,并返回
float *network_predict(network *net, float *input)
{
network orig = *net;
net->input = input;
net->truth = 0;
net->train = 0;
net->delta = 0;
forward_network(net);
float *out = net->output;
*net = orig;
return out;
}
// 返回网络中 bbox 的总数
int num_detections(network *net, float thresh)
{
int i;
int s = 0;
for(i = 0; i < net->n; ++i){
layer l = net->layers[i];
if(l.type == YOLO){
s += yolo_num_detections(l, thresh);
}
if(l.type == DETECTION || l.type == REGION){
s += l.w*l.h*l.n;
}
}
return s;
}
// 根据最后一层 bbox 的数目,构造 detection 数组 dets
detection *make_network_boxes(network *net, float thresh, int *num)
{
layer l = net->layers[net->n - 1];
int i;
int nboxes = num_detections(net, thresh);
if(num) *num = nboxes;
detection *dets = calloc(nboxes, sizeof(detection));
for(i = 0; i < nboxes; ++i){
dets[i].prob = calloc(l.classes, sizeof(float));
if(l.coords > 4){
dets[i].mask = calloc(l.coords-4, sizeof(float));
}
}
return dets;
}
// 填充 dets 中的信息
void fill_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, detection *dets)
{
int j;
for(j = 0; j < net->n; ++j){
layer l = net->layers[j];
if(l.type == YOLO){
int count = get_yolo_detections(l, w, h, net->w, net->h, thresh, map, relative, dets);
dets += count;
}
if(l.type == REGION){
get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets);
dets += l.w*l.h*l.n;
}
if(l.type == DETECTION){
get_detection_detections(l, w, h, thresh, dets);
dets += l.w*l.h*l.n;
}
}
}
// 获取网络的所有检测的 bbox (detection 数组 dets)
detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num)
{
detection *dets = make_network_boxes(net, thresh, num);
fill_network_boxes(net, w, h, thresh, hier, map, relative, dets);
return dets;
}
// 释放 detection 数组 dets 的内存
void free_detections(detection *dets, int n)
{
int i;
for(i = 0; i < n; ++i){
free(dets[i].prob);
if(dets[i].mask) free(dets[i].mask);
}
free(dets);
}
// 输入一张图像,网络预测输出
float *network_predict_image(network *net, image im)
{
// 调整输入图像大小,图像的 上下 或者 左右 多余的值为 0.5
image imr = letterbox_image(im, net->w, net->h);
// 设置1个batch的输入图像个数为1
set_batch_network(net, 1);
// 网络预测
float *p = network_predict(net, imr.data);
free_image(imr);
return p;
}
int network_width(network *net){return net->w;}
int network_height(network *net){return net->h;}
// 输入多张图像,网络预测输出,预测 n 次,取平均值
matrix network_predict_data_multi(network *net, data test, int n)
{
int i,j,b,m;
int k = net->outputs;
// 构造矩阵存储预测结果,行为 test.X.rows, 列为 k
matrix pred = make_matrix(test.X.rows, k);
float *X = calloc(net->batch * test.X.cols, sizeof(float));
for(i = 0; i < test.X.rows; i += net->batch){
for(b = 0; b < net->batch; ++b){
// 最后一个batch
if(i + b == test.X.rows) break;
memcpy(X + b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
}
// 预测 n 次,取平均值
for(m = 0; m < n; ++m){
float *out = network_predict(net, X);
for(b = 0; b < net->batch; ++b){
if(i+b == test.X.rows) break;
for(j = 0; j < k; ++j){
pred.vals[i+b][j] += out[j+b*k]/n;
}
}
}
}
free(X);
return pred;
}
// 输入多张图像,网络预测输出
matrix network_predict_data(network *net, data test)
{
int i,j,b;
int k = net->outputs;
matrix pred = make_matrix(test.X.rows, k);
float *X = calloc(net->batch*test.X.cols, sizeof(float));
for(i = 0; i < test.X.rows; i += net->batch){
for(b = 0; b < net->batch; ++b){
if(i+b == test.X.rows) break;
memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
}
float *out = network_predict(net, X);
for(b = 0; b < net->batch; ++b){
if(i+b == test.X.rows) break;
for(j = 0; j < k; ++j){
pred.vals[i+b][j] = out[j+b*k];
}
}
}
free(X);
return pred;
}
// 打印网络每一层的均值,方差和前100个输出
void print_network(network *net)
{
int i,j;
for(i = 0; i < net->n; ++i){
layer l = net->layers[i];
float *output = l.output;
int n = l.outputs;
// 均值
float mean = mean_array(output, n);
// 方差
float vari = variance_array(output, n);
fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
// 前100个输出
if(n > 100) n = 100;
for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]);
if(n == 100)fprintf(stderr,".....\n");
fprintf(stderr, "\n");
}
}
// 比较 n1 n2 预测结果的差距
void compare_networks(network *n1, network *n2, data test)
{
// 获取 n1 n2 的预测结果
matrix g1 = network_predict_data(n1, test);
matrix g2 = network_predict_data(n2, test);
int i;
int a,b,c,d;
a = b = c = d = 0;
for(i = 0; i < g1.rows; ++i){
// ground truth 以及 n1, n2 的预测结果
int truth = max_index(test.y.vals[i], test.y.cols);
int p1 = max_index(g1.vals[i], g1.cols);
int p2 = max_index(g2.vals[i], g2.cols);
/*
a: n1 n2 均预测错误
b: n1 预测错误,n2 预测正确
c: n1 预测正确,n2 预测错误
d: n1 n2 均预测正确
*/
if(p1 == truth){
if(p2 == truth) ++d;
else ++c;
}else{
if(p2 == truth) ++b;
else ++a;
}
}
printf("%5d %5d\n%5d %5d\n", a, b, c, d);
float num = pow((abs(b - c) - 1.), 2.);
float den = b + c;
printf("%f\n", num/den);
}
// 计算网络 top-1 准确度
float network_accuracy(network *net, data d)
{
matrix guess = network_predict_data(net, d);
float acc = matrix_topk_accuracy(d.y, guess,1);
free_matrix(guess);
return acc;
}
// 计算网络 top-1 准确度 和 top-n 准确度
float *network_accuracies(network *net, data d, int n)
{
static float acc[2];
matrix guess = network_predict_data(net, d);
acc[0] = matrix_topk_accuracy(d.y, guess, 1);
acc[1] = matrix_topk_accuracy(d.y, guess, n);
free_matrix(guess);
return acc;
}
// 获取网络最后一层(除去loss层)
layer get_network_output_layer(network *net)
{
int i;
for(i = net->n - 1; i >= 0; --i){
if(net->layers[i].type != COST) break;
}
return net->layers[i];
}
// 网络预测 n 次,对结果取平均,计算网络 top-1 准确度
float network_accuracy_multi(network *net, data d, int n)
{
matrix guess = network_predict_data_multi(net, d, n);
float acc = matrix_topk_accuracy(d.y, guess,1);
free_matrix(guess);
return acc;
}
// 释放网络内存
void free_network(network *net)
{
int i;
for(i = 0; i < net->n; ++i){
free_layer(net->layers[i]);
}
free(net->layers);
if(net->input) free(net->input);
if(net->truth) free(net->truth);
#ifdef GPU
if(net->input_gpu) cuda_free(net->input_gpu);
if(net->truth_gpu) cuda_free(net->truth_gpu);
#endif
free(net);
}
// 返回网络输出层
layer network_output_layer(network *net)
{
int i;
for(i = net->n - 1; i >= 0; --i){
if(net->layers[i].type != COST) break;
}
return net->layers[i];
}
// 返回网络输入个数
int network_inputs(network *net)
{
return net->layers[0].inputs;
}
// 返回网络输出个数
int network_outputs(network *net)
{
return network_output_layer(net).outputs;
}
// 返回网络输出
float *network_output(network *net)
{
return network_output_layer(net).output;
}
#ifdef GPU
// GPU版前向传播
void forward_network_gpu(network *netp)
{
network net = *netp;
cuda_set_device(net.gpu_index);
// 将主机内存拷贝到GPU内存
cuda_push_array(net.input_gpu, net.input, net.inputs*net.batch);
if(net.truth){
cuda_push_array(net.truth_gpu, net.truth, net.truths*net.batch);
}
int i;
for(i = 0; i < net.n; ++i){
net.index = i;
layer l = net.layers[i];
if(l.delta_gpu){
fill_gpu(l.outputs * l.batch, 0, l.delta_gpu, 1);
}
// GPU版前向传播
l.forward_gpu(l, net);
net.input_gpu = l.output_gpu;
net.input = l.output;
if(l.truth) {
net.truth_gpu = l.output_gpu;
net.truth = l.output;
}
}
// 将网络输出从GPU内存拷贝到主机内存
pull_network_output(netp);
// 计算网络的 loss
calc_network_cost(netp);
}
// GPU版反向传播
void backward_network_gpu(network *netp)
{
int i;
network net = *netp;
network orig = net;
cuda_set_device(net.gpu_index);
for(i = net.n-1; i >= 0; --i){
layer l = net.layers[i];
if(l.stopbackward) break;
if(i == 0){
net = orig;
}else{
layer prev = net.layers[i-1];
net.input = prev.output;
net.delta = prev.delta;
net.input_gpu = prev.output_gpu;
net.delta_gpu = prev.delta_gpu;
}
net.index = i;
// GPU版反向传播
l.backward_gpu(l, net);
}
}
// GPU版更新网络参数
void update_network_gpu(network *netp)
{
network net = *netp;
cuda_set_device(net.gpu_index);
update_args a = {0};
a.batch = net.batch*net.subdivisions;
a.learning_rate = get_current_rate(netp);
a.momentum = net.momentum;
a.decay = net.decay;
a.adam = net.adam;
a.B1 = net.B1;
a.B2 = net.B2;
a.eps = net.eps;
++*net.t;
a.t = (*net.t);
int i;
for(i = 0; i < net.n; ++i){
layer l = net.layers[i];
if(l.update_gpu){
// GPU版更新网络参数
l.update_gpu(l, a);
}
}
}
// 将网络每一层的 weight bias scale 的 updates 全部置为0
void harmless_update_network_gpu(network *netp)
{
network net = *netp;
cuda_set_device(net.gpu_index);
int i;
for(i = 0; i < net.n; ++i){
layer l = net.layers[i];
// 将 weight bias scale 的 updates 全部置为0
if(l.weight_updates_gpu) fill_gpu(l.nweights, 0, l.weight_updates_gpu, 1);
if(l.bias_updates_gpu) fill_gpu(l.nbiases, 0, l.bias_updates_gpu, 1);
if(l.scale_updates_gpu) fill_gpu(l.nbiases, 0, l.scale_updates_gpu, 1);
}
}
typedef struct {
network *net;
data d;
float *err;
} train_args;
// 训练网络的线程
void *train_thread(void *ptr)
{
train_args args = *(train_args*)ptr;
free(ptr);
cuda_set_device(args.net->gpu_index);
*args.err = train_network(args.net, args.d);
return 0;
}
// 创建并返回训练网络的线程
pthread_t train_network_in_thread(network *net, data d, float *err)
{
pthread_t thread;
train_args *ptr = (train_args *)calloc(1, sizeof(train_args));
ptr->net = net;
ptr->d = d;
ptr->err = err;
if(pthread_create(&thread, 0, train_thread, ptr)) error("Thread creation failed");
return thread;
}
// 更新 bias 和 weight
void merge_weights(layer l, layer base)
{
if (l.type == CONVOLUTIONAL) {
axpy_cpu(l.n, 1, l.bias_updates, 1, base.biases, 1);
axpy_cpu(l.nweights, 1, l.weight_updates, 1, base.weights, 1);
if (l.scales) {
axpy_cpu(l.n, 1, l.scale_updates, 1, base.scales, 1);
}
} else if(l.type == CONNECTED) {
axpy_cpu(l.outputs, 1, l.bias_updates, 1, base.biases, 1);
axpy_cpu(l.outputs*l.inputs, 1, l.weight_updates, 1, base.weights, 1);
}
}
// 缩放 bias 和 weight
void scale_weights(layer l, float s)
{
if (l.type == CONVOLUTIONAL) {
scal_cpu(l.n, s, l.biases, 1);
scal_cpu(l.nweights, s, l.weights, 1);
if (l.scales) {
scal_cpu(l.n, s, l.scales, 1);
}
} else if(l.type == CONNECTED) {
scal_cpu(l.outputs, s, l.biases, 1);
scal_cpu(l.outputs*l.inputs, s, l.weights, 1);
}
}
// 将 bias 和 weight 从GPU内存拷贝到主机内存
void pull_weights(layer l)
{
if(l.type == CONVOLUTIONAL || l.type == DECONVOLUTIONAL){
cuda_pull_array(l.biases_gpu, l.bias_updates, l.n);
cuda_pull_array(l.weights_gpu, l.weight_updates, l.nweights);
if(l.scales) cuda_pull_array(l.scales_gpu, l.scale_updates, l.n);
} else if(l.type == CONNECTED){
cuda_pull_array(l.biases_gpu, l.bias_updates, l.outputs);
cuda_pull_array(l.weights_gpu, l.weight_updates, l.outputs*l.inputs);
}
}
// 将 bias 和 weight 从主机内存拷贝到GPU内存
void push_weights(layer l)
{
if(l.type == CONVOLUTIONAL || l.type == DECONVOLUTIONAL){
cuda_push_array(l.biases_gpu, l.biases, l.n);
cuda_push_array(l.weights_gpu, l.weights, l.nweights);
if(l.scales) cuda_push_array(l.scales_gpu, l.scales, l.n);
} else if(l.type == CONNECTED){
cuda_push_array(l.biases_gpu, l.biases, l.outputs);
cuda_push_array(l.weights_gpu, l.weights, l.outputs*l.inputs);
}
}
// 将 layer base 的 bias 和 weight 从主机内存拷贝到 layer l 的GPU内存
void distribute_weights(layer l, layer base)
{
if (l.type == CONVOLUTIONAL || l.type == DECONVOLUTIONAL) {
cuda_push_array(l.biases_gpu, base.biases, l.n);
cuda_push_array(l.weights_gpu, base.weights, l.nweights);
if (base.scales) cuda_push_array(l.scales_gpu, base.scales, l.n);
} else if (l.type == CONNECTED) {
cuda_push_array(l.biases_gpu, base.biases, l.outputs);
cuda_push_array(l.weights_gpu, base.weights, l.outputs*l.inputs);
}
}
// 同步所有网络第 j 层 layer
void sync_layer(network **nets, int n, int j)
{
int i;
network *net = nets[0];
// 将网络 第 j 层 layer 拷贝到 base,并将 bias 和 weight 初始化为 0
layer base = net->layers[j];
scale_weights(base, 0);
// 将所有网络第 j 层的 bias 和 weight 累加到 base,并求平均
for (i = 0; i < n; ++i) {
cuda_set_device(nets[i]->gpu_index);
layer l = nets[i]->layers[j];
pull_weights(l);
merge_weights(l, base);
}
scale_weights(base, 1./n);
// 将 base 的 bias 和 weight 拷贝到所有网络第 j 层的GPU内存
for (i = 0; i < n; ++i) {
cuda_set_device(nets[i]->gpu_index);
layer l = nets[i]->layers[j];
distribute_weights(l, base);
}
}
typedef struct{
network **nets;
int n;
int j;
} sync_args;
// 同步网络的线程
void *sync_layer_thread(void *ptr)
{
sync_args args = *(sync_args*)ptr;
sync_layer(args.nets, args.n, args.j);
free(ptr);
return 0;
}
// 创建并返回同步网络的线程
pthread_t sync_layer_in_thread(network **nets, int n, int j)
{
pthread_t thread;
sync_args *ptr = (sync_args *)calloc(1, sizeof(sync_args));
ptr->nets = nets;
ptr->n = n;
ptr->j = j;
if(pthread_create(&thread, 0, sync_layer_thread, ptr)) error("Thread creation failed");
return thread;
}
// interval个batch后,同步网络
void sync_nets(network **nets, int n, int interval)
{
int j;
int layers = nets[0]->n;
pthread_t *threads = (pthread_t *) calloc(layers, sizeof(pthread_t));
// 更新网络已经看到的图片数量,并同步到所有网络
*(nets[0]->seen) += interval * (n-1) * nets[0]->batch * nets[0]->subdivisions;
for (j = 0; j < n; ++j){
*(nets[j]->seen) = *(nets[0]->seen);
}
// 同步网络的所有layer
for (j = 0; j < layers; ++j) {
threads[j] = sync_layer_in_thread(nets, n, j);
}
for (j = 0; j < layers; ++j) {
pthread_join(threads[j], 0);
}
free(threads);
}
// n 个 GPU 训练网络
float train_networks(network **nets, int n, data d, int interval)
{
int i;
int batch = nets[0]->batch;
int subdivisions = nets[0]->subdivisions;
// 保证 d.X.rows 能够被 n 整除
assert(batch * subdivisions * n == d.X.rows);
pthread_t *threads = (pthread_t *) calloc(n, sizeof(pthread_t));
float *errors = (float *) calloc(n, sizeof(float));
float sum = 0;
for(i = 0; i < n; ++i){
// 多GPU分配数据
data p = get_data_part(d, i, n);
// 创建并返回训练网络的线程
threads[i] = train_network_in_thread(nets[i], p, errors + i);
}
for(i = 0; i < n; ++i){
pthread_join(threads[i], 0);
//printf("%f\n", errors[i]);
sum += errors[i];
}
//cudaDeviceSynchronize();
// interval个batch后,同步网络
if (get_current_batch(nets[0]) % interval == 0) {
printf("Syncing... ");
fflush(stdout);
sync_nets(nets, n, interval);
printf("Done!\n");
}
//cudaDeviceSynchronize();
free(threads);
free(errors);
return (float)sum/(n);
}
// 将网络输出从GPU内存拷贝到主机内存
void pull_network_output(network *net)
{
layer l = get_network_output_layer(net);
// 将GPU内存拷贝到主机内存
cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch);
}
#endif
更多推荐
已为社区贡献1条内容
所有评论(0)