本讲概述

卷积实际上就是特征提取。本讲我们先了解学习卷积神经网络基础知识,再一步步地学习搭建卷积神经网络,最后会运用卷积神经网络对cifar10 数据集分类。在本讲的最后附上几个经典卷积神经网络:LeNet、AlexNet、VGGNet、InceptionNet和 ResNet 。

一、卷积神经网络基础知识

1.卷积计算过程

卷积计算可认为是一种有效提取图像特征的方法。

一般会用一个正方形的卷积核,按指定步长,在输入特征图上滑动 ,遍历输入特征图中的每个像素点。每一个步长,卷积核会与输入 特征图出现重合区域,重合区域对应元素相乘、求和再加上偏置项 得到输出特征的一个像素点。如图所示:

上图所示的输入特征图的深度为一,即输入特征是是单通道(灰色图片)。如果输入的图片为彩色,则输入特征为三通道(红绿蓝),卷积核的深度也应为三,计算方式如下图所示:

总结:输入特征图的深度(channel数)决定了当前层卷积核的深度; 当前层卷积核的个数,决定了当前层输出特征图的
几种常见的卷积核:

2.感受野(Receptive Field)

定义:卷积神经网络各输出特征图中的每个像素点,在原始输入图片上映射区域的大小。

如上图所示,右边为输出特征图,它的每一个像素点(即一个小方格),映射到原始图片(左边图片)是3*3的区域,所以它的感受野是3。

如上图 ,再对输出的3*3的特征图用绿色的3*3的卷积核作用,会输出一个1*1的输出特征图。这时输出图的一个像素点映射到原始图(最左侧的图)是5*5的区域,所以它的感受野是5。

如果对5*5的原始输入图直接用蓝色的5*5的卷积核作用 ,会输出一个1*1的输出特征图。这个特征图的一个像素点映射到原始图片是5*5的区域,所以它的感受野是5。

由上述过程可知,2 层 3 * 3 卷积核和1 层 5 * 5 卷积核的特征提取能力是一样的,对比两者的计算量,如下图,我们可以知道2 层 3 * 3 卷积核的计算量更小,所以经常会采用多层小卷积核来替换一层大卷积核,在保持感受野相同的情况下减少参数量和计算量。

输出图片边长=(输入图片边长-卷积核高-1)/步长

上图计算量详细推导

对于两个 3 * 3 卷积核来说,第一个 3 * 3 卷积核输出特征图共有(x – 3 + 1)^2 个像素点,每个像素点需要进行 3 * 3 = 9 次乘加运算,第二个 3 * 3 卷积核输出特征图共有(x – 3 + 1 – 3+ 1)^2 个像素点,每个像素点同样需要进行 9 次乘加运算,则总计算量为 9 * (x – 3 + 1)^2 +9 * (x – 3 + 1 – 3 + 1)^2 = 18 x^2 – 108x + 180;对于 5 * 5 卷积核来说,输出特征图共有(x – 5 + 1)^2 个像素点,每个像素点需要进行 5 * 5 = 25 次乘加运算,则总计算量为 25 * (x – 5 + 1)^2 = 25x^2 – 200x + 400

解18 x^2 – 200x + 400 < 25x^2 – 200x +400,经过简单数学运算可得 x < 22/7 or x > 10,x 作为特征图的边长,在大多数情况下显然会是一个大于 10 的值(非常简单的 MNIST 数据集的尺寸也达到了 28 * 28),所以两层 3 *3 卷积核的参数量和计算量,在通常情况下都优于一层 5 * 5 卷积核,尤其是当特征图尺寸比较大的情况下,两层 3 * 3 卷积核在计算量上的优势会更加明显。

3.全零填充(padding) 

为了保持输出图像尺寸与输入图像一致,经常会在输入图像周围进行全零填充,如下图 ,在 5×5 的输入图像周围填 0,则输出特征尺寸同为 5×5。

Tensorflow中使用方式 :

4.批标准化(Batch Normalization,BN)

标准化:使数据符合0均值,1为标准差的分布。

批标准化:对一小批数据(batch),做标准化处理。

Batch Normalization 将神经网络每层的输入都调整到均值为 0,方差为 1 的标准正态分
布,其目的是解决神经网络中梯度消失的问题,如图所示:

BN 操作的另一个重要步骤是缩放和偏移,缩放因子 γ 以及偏移因子 β都是可训练参数,其作用如图所示:

TF描述批标准化 tf.keras.layers.BatchNormalization(),BN层位于卷积层之后,激活层之前。

5.池化(Pooling)

池化用于减少特征数据量(降维)。 最大值池化可提取图片纹理,均值池化可保留背景特征。如图:

 TF描述池化:

6.舍弃(Dropout)

在之前深度学习中叫做随机失活,在神经网络的训练过程中,将一部分神经元按照一定概率从神经网络中暂时舍弃,使用时被舍弃的神经元恢复链接,如图所示:

TF描述舍弃:tf.keras.layers.Dropout(舍弃的概率)

二、搭建卷积神经网络

1.卷积过程整合

总结:卷积就是特征提取器,就是CBAPD。

2.卷积神经网络搭建示例 

主要思路为在卷积神经网络(CNN)中利用卷积核(kernel)提取特征后,送入全连接网络。如下图:

下面以下图所示卷积层和全连接层为例搭建:

Tensorflow 表示:

在此主干的基础上,利用之前写过的使用Keras 来搭建神经网络的“八股”套路。还可以添加其他内容,来完善神经网络的功能,如利用自己的图片和标签文件来自制数据集;通过旋转、缩放、平移等操作对数据集进行数据增强;保存模型文件进行断点续训;提取训练后得到的模型参数以及准确率曲线,实现可视化等。 

代码如下:

import tensorflow as tf
import os
import numpy as np
from matplotlib import pyplot as plt
from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, MaxPool2D, Dropout, Flatten, Dense
from tensorflow.keras import Model

np.set_printoptions(threshold=np.inf)


class Baseline(Model):
    def __init__(self):
        super(Baseline, self).__init__()
        self.c1 = Conv2D(filters=6, kernel_size=(5, 5), padding='same')  # 卷积层
        self.b1 = BatchNormalization()  # BN层
        self.a1 = Activation('relu')  # 激活层
        self.p1 = MaxPool2D(pool_size=(2, 2), strides=2, padding='same')  # 池化层
        self.d1 = Dropout(0.2)  # dropout层

        self.flatten = Flatten()
        self.f1 = Dense(128, activation='relu')
        self.d2 = Dropout(0.2)
        self.f2 = Dense(10, activation='softmax')

    def call(self, x):
        x = self.c1(x)
        x = self.b1(x)
        x = self.a1(x)
        x = self.p1(x)
        x = self.d1(x)

        x = self.flatten(x)
        x = self.f1(x)
        x = self.d2(x)
        y = self.f2(x)
        return y


model = Baseline()

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

checkpoint_save_path = "./checkpoint/Baseline.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
    print('-------------load the model-----------------')
    model.load_weights(checkpoint_save_path)

cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                 save_weights_only=True,
                                                 save_best_only=True)

history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,
                    callbacks=[cp_callback])
model.summary()

# print(model.trainable_variables)
file = open('./weights.txt', 'w')
for v in model.trainable_variables:
    file.write(str(v.name) + '\n')
    file.write(str(v.shape) + '\n')
    file.write(str(v.numpy()) + '\n')
file.close()

###############################################    show   ###############################################

# 显示训练集和验证集的acc和loss曲线
acc = history.history['sparse_categorical_accuracy']
val_acc = history.history['val_sparse_categorical_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']

plt.subplot(1, 2, 1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()

plt.subplot(1, 2, 2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()

三、使用卷积神经网络

cifar10 数据集介绍:

该数据集共有 60000 张彩色图像,每张尺寸为 32 * 32,分为 10 类,每类 6000 张。训练集 50000 张,分为 5 个训练批,每批 10000 张;从每一类随机取 1000张构成测试集,共 10000 张,剩下的随机排列组成训练集,如图所示:

利用上面搭建的神经网络对cifar10 数据集进行训练,验证。

在神经网络训练前加上数据导入:

cifar10 = tf.keras.datasets.cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

结果如下:

就是之前在就

四、经典卷积神经网络 

5 个 CNN 经典网络:

1.LeNet 

共享卷积核,减少网络参数。

TF表示:

2.AlexNet

激活函数使用 Relu,提升训练速度;Dropout 防止过拟合。TF表示:

3 VGGNet 

小卷积核减少参数的同时,提高识别准确率;网络结构规整,适合并行加速。

 TF表示:

 

4.InceptionNe

一层内使用不同尺寸的卷积核,提升感知力(通过 padding 实现输出特征面积一致);
使用 1 * 1 卷积核,改变输出特征 channel 数(减少网络参数)。

TF表示:

5.ResNe

层间残差跳连,引入前方信息,减少梯度消失,使神经网络层数变身成为可能。

TF表示:

Logo

助力广东及东莞地区开发者,代码托管、在线学习与竞赛、技术交流与分享、资源共享、职业发展,成为松山湖开发者首选的工作与学习平台

更多推荐