目录

和为k的⼦数组(medium)

题目解析

讲解算法原理

编写代码

和可被K整除的⼦数组(medium)

题目解析

讲解算法原理

编写代码


和为k的⼦数组(medium)

题目解析

1.题目链接:. - 力扣(LeetCode)

2.题目描述

给你⼀个整数数组nums和⼀个整数k,请你统计并返回该数组中和为k的连续⼦数组的个数。
⽰例1:
输⼊:nums=[1,1,1],k=2
输出:2
⽰例2:
输⼊:nums=[1,2,3],k=3
输出:2
提⽰:
1<=nums.length<=2*10^4
-1000<=nums[i]<=1000
-10^7<=k<=10^7

讲解算法原理

解法⼀(将前缀和存在哈希表中):
算法思路:

设 i 为数组中的任意位置,⽤ sum[i] 表⽰ [0, i] 区间内所有元素的和。
想知道有多少个「以 i 为结尾的和为 k 的⼦数组」,就要找到有多少个起始位置为 x1, x2, x3... 使得 [x, i] 区间内的所有元素的和为 k 。那么 [0, x] 区间内的和是不是就是
sum[i] - k 了。于是问题就变成:
◦ 找到在 [0, i - 1] 区间内,有多少前缀和等于 sum[i] - k 的即可。
我们不⽤真的初始化⼀个前缀和数组,因为我们只关⼼在 i 位置之前,有多少个前缀和等于
sum[i] - k 。因此,我们仅需⽤⼀个哈希表,⼀边求当前位置的前缀和,⼀边存下之前每⼀种
前缀和出现的次数。 

编写代码

c++算法代码:

class Solution
{
public:
 int subarraySum(vector<int>& nums, int k) 
 {
 unordered_map<int, int> hash; // 统计前缀和出现的次数
 hash[0] = 1;
 int sum = 0, ret = 0;
 for(auto x : nums)
 {
 sum += x; // 计算当前位置的前缀和
 if(hash.count(sum - k)) ret += hash[sum - k]; // 统计个数
 hash[sum]++;
 }
 return ret;
 }
};

java算法代码:

class Solution {
 public int subarraySum(int[] nums, int k) {
 Map<Integer, Integer> hash = new HashMap<Integer, Integer>();
 hash.put(0, 1);
 int sum = 0, ret = 0;
 for(int x : nums)
 {
 sum += x; // 计算当前位置的前缀和
 ret += hash.getOrDefault(sum - k, 0); // 统计结果
 hash.put(sum, hash.getOrDefault(sum, 0) + 1); // 把当前的前缀和丢到哈希表⾥⾯
 }
 return ret;
 }
}

 

和可被K整除的⼦数组(medium)

题目解析

(本题是某一年蓝桥杯竞赛原题)

1.题目链接:. - 力扣(LeetCode)

2。题目描述

给定⼀个整数数组nums和⼀个整数k,返回其中元素之和可被k整除的(连续、⾮空)⼦数组的数⽬。
⼦数组是数组的连续部分。
⽰例1:
输⼊:
nums=[4,5,0,-2,-3,1],k=5
输出:
7
解释:
有7个⼦数组满⾜其元素之和可被k=5整除:
[4,5,0,-2,-3,1],[5],[5,0],[5,0,-2,-3],[0],[0,-2,-3],[-2,-3]
⽰例2:
输⼊:
nums=[5],k=9
输出:
0
提⽰:
1<=nums.length<=3*104
-104<=nums[i]<=104
2<=k<=104

讲解算法原理

解法(前缀和在哈希表中):
(暴⼒解法就是枚举出所有的⼦数组的和,这⾥不再赘述。)
本题需要的前置知识:
• 同余定理
如果 (a - b) % n == 0 ,那么我们可以得到⼀个结论: a % n == b % n 。⽤⽂字叙述就是,如果两个数相减的差能被n整除,那么这两个数对n取模的结果相同。
例如: (26 - 2) % 12 == 0 ,那么 26 % 12 == 2 % 12 == 2 。
• c++ 中负数取模的结果,以及如何修正「负数取模」的结果
a. c++ 中关于负数的取模运算,结果是「把负数当成正数,取模之后的结果加上⼀个负号」。
例如: -1 % 3 = -(1 % 3) = -1
b. 因为有负数,为了防⽌发⽣「出现负数」的结果,以 (a % n + n) % n 的形式输出保证为
正。
例如: -1 % 3 = (-1 % 3 + 3) % 3 = 2

算法思路:
思路与560.和为K的⼦数组这道题的思路相似。

设 i 为数组中的任意位置,⽤ sum[i] 表⽰ [0, i] 区间内所有元素的和。
• 想知道有多少个「以 i 为结尾的可被 k 整除的⼦数组」,就要找到有多少个起始位置为 x1, 
x2, x3... 使得 [x, i] 区间内的所有元素的和可被 k 整除。
• 设 [0, x - 1] 区间内所有元素之和等于 a , [0, i] 区间内所有元素的和等于 b ,可得
(b - a) % k == 0 。
• 由同余定理可得, [0, x - 1] 区间与 [0, i] 区间内的前缀和同余。于是问题就变成:
◦ 找到在 [0, i - 1] 区间内,有多少前缀和的余数等于 sum[i] % k 的即可。
我们不⽤真的初始化⼀个前缀和数组,因为我们只关⼼在 i 位置之前,有多少个前缀和等于
sum[i] - k 。因此,我们仅需⽤⼀个哈希表,⼀边求当前位置的前缀和,⼀边存下之前每⼀种前
缀和出现的次数。 

编写代码

c++算法代码:

class Solution
{
public:
 int subarraysDivByK(vector<int>& nums, int k) 
 {
 unordered_map<int, int> hash;
 hash[0 % k] = 1; // 0 这个数的余数
 int sum = 0, ret = 0;
 for(auto x : nums)
 {
 sum += x; // 算出当前位置的前缀和
 int r = (sum % k + k) % k; // 修正后的余数
 if(hash.count(r)) ret += hash[r]; // 统计结果
 hash[r]++;
 }
 return ret;
 }
};

java算法原理:

class Solution {
 public int subarraysDivByK(int[] nums, int k) {
 Map<Integer, Integer> hash = new HashMap<Integer, Integer>();
 hash.put(0 % k, 1);
 int sum = 0, ret = 0;
 for(int x : nums)
 {
 sum += x; // 计算当前位置的前缀和
 int r = (sum % k + k) % k;
 ret += hash.getOrDefault(r, 0); // 统计结果
 hash.put(r, hash.getOrDefault(r, 0) + 1);
 }
 return ret;
 }
}

Logo

助力广东及东莞地区开发者,代码托管、在线学习与竞赛、技术交流与分享、资源共享、职业发展,成为松山湖开发者首选的工作与学习平台

更多推荐