目录

快乐数(medium)

题目解析

讲解算法原理

编写代码

盛水最多的容器(medium)

题目解析

讲解算法原理

编写代码


快乐数(medium)

题目解析

1.题目链接:. - 力扣(LeetCode)

2.题目描述

编写⼀个算法来判断⼀个数 n 是不是快乐数。
「快乐数」定义为:
◦ 对于⼀个正整数,每⼀次将该数替换为它每个位置上的数字的平⽅和。
◦ 然后重复这个过程直到这个数变为1,也可能是⽆限循环但始终变不到 1 。
◦ 如果这个过程结果为 1 ,那么这个数就是快乐数。
◦ 如果 n 是快乐数就返回 true ;不是,则返回 false 。
⽰例1:
输⼊: n = 19
输出: true
解释:
19 -> 1 * 1 + 9 * 9 = 82
82 -> 8 * 8 + 2 * 2 = 68
68 -> 6 * 6 + 8 * 8 = 100
100 -> 1 * 1 + 0 * 0 + 0 * 0 = 1
⽰例2:
输⼊: n = 2
输出: false
解释:(这⾥省去计算过程,只列出转换后的数)
2 -> 4 -> 16 -> 37 -> 58 -> 89 -> 145 -> 42 -> 20 -> 4 -> 16
往后就不必再计算了,因为出现了重复的数字,最后结果肯定不会是 1

3.题目分析

为了⽅便叙述,将「对于⼀个正整数,每⼀次将该数替换为它每个位置上的数字的平⽅和」这⼀个操作记为 x 操作;
题⽬告诉我们,当我们不断重复 x 操作的时候,计算⼀定会「死循环」,死的⽅式有两种:
▪ 情况⼀:⼀直在 1 中死循环,即 1 -> 1 -> 1 -> 1......
▪ 情况⼆:在历史的数据中死循环,但始终变不到 1
由于上述两种情况只会出现⼀种,因此,只要我们能确定循环是在「情况⼀」中进⾏,还是在「情况⼆」中进⾏,就能得到结果。
简单证明:
a. 经过⼀次变化之后的最⼤值 9^2 * 10 = 810 ( 2^31-1=2147483647 。选⼀个更⼤的最
⼤ 9999999999 ),也就是变化的区间在 [1, 810] 之间;
b. 根据「鸽巢原理」,⼀个数变化 811 次之后,必然会形成⼀个循环;
c. 因此,变化的过程最终会⾛到⼀个圈⾥⾯,因此可以⽤「快慢指针」来解决。

4.解法(快慢指针)

讲解算法原理

算法思路:
根据上述的题⽬分析,我们可以知道,当重复执⾏ x 的时候,数据会陷⼊到⼀个「循环」中。⽽「快慢指针」有⼀个特性,就是在⼀个圆圈中,快指针总是会追上慢指针的,也就是说他们总会相遇在⼀个位置上。如果相遇位置的值是 1 ,那么这个数⼀定是快乐数;如果相遇位置不是 1 的话,那么就不是快乐数。
补充知识:如何求⼀个数n每个位置上的数字的平⽅和。
a. 把数 n 每⼀位的数提取出来:
循环迭代下⾯步骤:
i. int t = n % 10 提取个位;
ii. n /= 10 ⼲掉个位;
直到 n 的值变为 0 ;
b. 提取每⼀位的时候,⽤⼀个变量 tmp 记录这⼀位的平⽅与之前提取位数的平⽅和
▪ tmp = tmp + t * t 

 

如图所示,最终都可以变为有环去计算,只是其中一个环上都是1 

编写代码

c++算法代码:

class Solution
{
public:
 int bitSum(int n) // 返回 n 这个数每⼀位上的平⽅和{ int sum = 0;
 while(n)
 {
 int t = n % 10;
 sum += t * t;
 n /= 10;
 }
 return sum;
 }
 bool isHappy(int n) 
 {
 int slow = n, fast = bitSum(n);
 while(slow != fast)
 {
 slow = bitSum(slow);
 fast = bitSum(bitSum(fast));
 }
 return slow == 1;
 }
};

java算法代码:

class Solution
{
 public int bitSum(int n) // 返回 n 这个数每⼀位上的平⽅和 {
 int sum = 0;
 while(n != 0)
 {
 int t = n % 10;
 sum += t * t;
 n /= 10;
 }
 return sum;
 }
 public boolean isHappy(int n) 
 {
 int slow = n, fast = bitSum(n);
 while(slow != fast)
 {
 slow = bitSum(slow);
 fast = bitSum(bitSum(fast));
 }
 return slow == 1;
 }
}

盛水最多的容器(medium)

题目解析

1.题目链接:. - 力扣(LeetCode)

2.题目描述

给定⼀个⻓度为 n 的整数数组height。有 n 条垂线,第i条线的两个端点是 (i, 0) 和 (i, height[i]) 。
找出其中的两条线,使得它们与x轴共同构成的容器可以容纳最多的⽔。
返回容器可以储存的最⼤⽔量。
说明:你不能倾斜容器。
⽰例1:
输⼊: [1,8,6,2,5,4,8,3,7]
输出: 49

解释:图中垂直线代表输⼊数组 [1,8,6,2,5,4,8,3,7] 。在此情况下,容器能够容纳⽔(表⽰为蓝⾊部分)的最⼤值为 49 。

3.解法⼀(暴⼒求解)(会超时): 

讲解算法原理

算法思路:
枚举出能构成的所有容器,找出其中容积最⼤的值。
◦ 容器容积的计算⽅式:
设两指针 i , j ,分别指向⽔槽板的最左端以及最右端,此时容器的宽度为 j - i 。由于容器的⾼度由两板中的短板决定,因此可得容积公式: v = (j - i) * min( height[i], height[j])

编写代码1
class Solution {
public:
 int maxArea(vector<int>& height) {
 int n = height.size();
 int ret = 0;
 // 两层 for 枚举出所有可能出现的情况
 for (int i = 0; i < n; i++) {
 for (int j = i + 1; j < n; j++) {
 // 计算容积,找出最⼤的那⼀个
 ret = max(ret, min(height[i], height[j]) * (j - i));
 }
 }
 return ret;
 }
};

4. 解法⼆(对撞指针):
算法思路:
设两个指针 left , right 分别指向容器的左右两个端点,此时容器的容积:
v = (right - left) * min( height[right], height[left]) 
容器的左边界为 height[left] ,右边界为 height[right] 。
为了⽅便叙述,我们假设「左边边界」⼩于「右边边界」。
如果此时我们固定⼀个边界,改变另⼀个边界,⽔的容积会有如下变化形式:
◦ 容器的宽度⼀定变⼩。
◦ 由于左边界较⼩,决定了⽔的⾼度。如果改变左边界,新的⽔⾯⾼度不确定,但是⼀定不会超
过右边的柱⼦⾼度,因此容器的容积可能会增⼤。
◦ 如果改变右边界,⽆论右边界移动到哪⾥,新的⽔⾯的⾼度⼀定不会超过左边界,也就是不会
超过现在的⽔⾯⾼度,但是由于容器的宽度减⼩,因此容器的容积⼀定会变⼩的。
由此可⻅,左边界和其余边界的组合情况都可以舍去。所以我们可以 left++ 跳过这个边界,继续去判断下⼀个左右边界。
当我们不断重复上述过程,每次都可以舍去⼤量不必要的枚举过程,直到 left 与 right 相遇。期间产⽣的所有的容积⾥⾯的最⼤值,就是最终答案。 

编写代码

C++算法代码:

class Solution
{
public:
 int maxArea(vector<int>& height) 
 {
 int left = 0, right = height.size() - 1, ret = 0;
 while(left < right)
 {
 int v = min(height[left], height[right]) * (right - left);
 ret = max(ret, v);
 // 移动指针
 if(height[left] < height[right]) left++;
 else right--;
 }
 return ret;
 }
};

Java算法代码:

class Solution
{
 public int maxArea(int[] height) 
 {
 int left = 0, right = height.length - 1, ret = 0;
 while(left < right)
 {
 int v = Math.min(height[left], height[right]) * (right - left);
 ret = Math.max(ret, v);
 if(height[left] < height[right]) left++;
 else right--;
 }
 return ret;
 }
}

 

Logo

助力广东及东莞地区开发者,代码托管、在线学习与竞赛、技术交流与分享、资源共享、职业发展,成为松山湖开发者首选的工作与学习平台

更多推荐